Wood fractionation by deep eutectic solvent systems

EFPRO – CEPI 3rd Early Stage Researchers Workshop 25th November 2014

Ronny Wahlström, Lauri Kuutti, Jaakko Hiltunen, Stella Rovio, Sauli Vuoti

VTT Technical Research Centre of Finland
Deep eutectic solvents

- Main constituents of DESs are high melting temperature solids with strong hydrogen bond interactions
 - Typically a salt + non-charged hydrogen bond donor
 - If mixture has low melting point → DES

- Most studied DES:
 - Choline chloride-urea
 - Choline chloride-ethylene glycol
 - Choline chloride-glycerol

![Cholinium chloride : urea](image)

Components → **Deep eutectic solvent**
DETs and ionic liquids in comparison

- Common properties:
 - Low volatility (no solvent emissions), excellent solvent properties, high viscosity, good chemical and thermostability

<table>
<thead>
<tr>
<th>Deep eutectic solvents</th>
<th>Ionic liquids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheap raw materials</td>
<td>Expensive</td>
</tr>
<tr>
<td>Low toxicity</td>
<td>Toxic</td>
</tr>
<tr>
<td>Easy to prepare by mixing</td>
<td>Prepared by synthesis</td>
</tr>
<tr>
<td>Low cellulose and wood solubility</td>
<td>Powerfull cellulose and lignocellulose solvents</td>
</tr>
</tbody>
</table>
DESs in biomass modification

- Generally not as powerful biomass solvents as ILs

- DESs good solvents for lignin and hemicellulose
 - Little known about DESs as cellulose solvents

- Application potential:
 - Feedstock pretreatment in biofuel production
 - Fibrillation and pulping of fibre materials
 - Fractionation of lignocellulose
Objective: Wood fractionation and fibrillation by DES treatment

- Task: fractionate/fibrillate softwood saw dust by cooking in DESs

- VTT approach:
 - Use unit operations, chemicals and equipment compatible to industrial processes
 - Interaction with industrial partners
 - Combine scientific and engineering disciplines mastered in-house
 - Molecular modelling to understand fundamental DES interactions
 - Both academic and technical excellence targeted in project
Fractionation trials - experimental

- Reactor $T = 75 \, ^\circ\text{C}$, stirring speed 100 rpm, cooking time 16 h
- Cooking step followed by particle size fractionation through sieving accompanied by water washing

Tornado Plus Overhead Stirring System with 6 seat reactor carousel
Fractionation trials - results

- Finest material enriched in lignin
- Fraction composition analyses currently under way
Enzymatic lignocellulose hydrolysis in DES solutions

- Ionic liquids (ILs) have been used for lignocellulose pretreatment prior to hydrolysis in biofuel and -chemical production
 - ILs inactivate enzymes used in biomass saccharification
 - Potential to use DESs instead of ILs
- Enzyme-compatibility of biomass-dissolving DESs not well known

- Stability in DES of polysaccharide hydrolysing enzymes studied in this project
Stability of polysaccharide hydrolases in DES solutions - results

- Cellulase and xylanase stability tested in three DESs (85 w-% conc.) with the IL [EMIM]AcO and buffer as references.
- DESs clearly more stabilizing than [EMIM]AcO.
- DESs can enable new pretreatment methods for biomass in biofuel production.
Conclusions

- Wood fractionation and fibrillation with DES appears promising

- The choice of DES is crucial for process efficiency
 - More understanding of processing parameters is needed
 - More understanding of the physico-chemical interactions between DES and lignocellulose components is needed

- DES technology very interesting for use in enzymatic processes
Acknowledgements

For funding:
- The Finnish Funding Agency for Innovation’s (TEKES) Strategic opening "Öljytön kemia" TEKES-DES project

Contacts: sauli.vuoti@vtt.fi (Sauli Vuoti)
 jaakko.hiltunen@vtt.fi (Jaakko Hiltunen)
 ronny.wahlstrom@vtt.fi (Ronny Wahlström)
TECHNOLOGY FOR BUSINESS